# Malnutrition differential diagnosis

Jarmila Křížová, MD, PhD.

3rd Medical dpt

VFN

### **Nutritional disorders**

- 1. Definition
- 2. Types of malnutrition
- 3. Differencial diagnosis of malnutrition
- 4. Therapy of malnutrition

### **Nutritional disorders**

- 1. Definition
- 2. Types of malnutrition
- 3. Differencial diagnosis of malnutrition
- 4. Therapy of malnutrition

Malnutrition is a pathologic status caused by decreased nutrients income or increased catabolism.

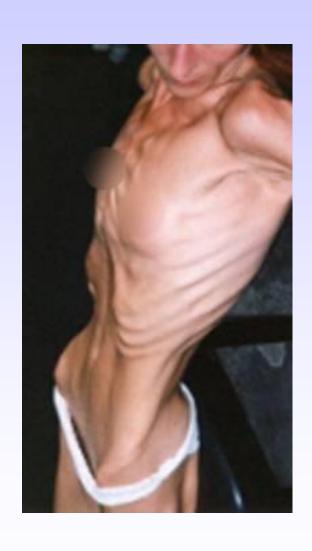
- 20-90% in- patients
- 30% develops in the hospital
- 3-4% patients are critically imperil by malnutrition
- 44% malnourished patients have longer time and cost of stay in hospital

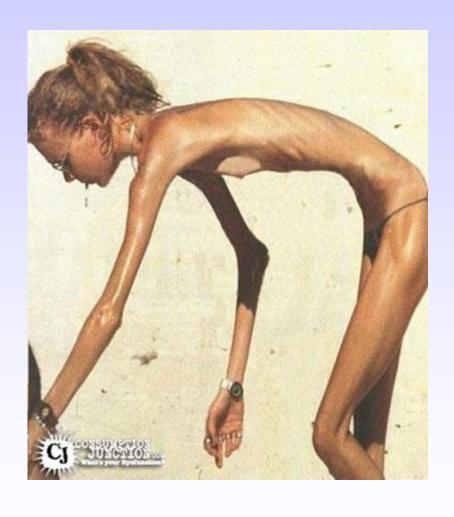






### **Nutritional disorders**


- 1. Definition
- 2. Types of malnutrition
- 3. Differencial diagnosis of malnutrition
- 4. Therapy of malnutrition


# Types of malnutrition

- Marasmus = simple starving
  - absence of protein and energy
- Kwashiorkor
  - stressed starving
  - Decreased protein stores

Combination of both

## Types of malnutrition - marasmus





### Types of malnutrition - marasmus

- Easy to recognize
- Gradual decrease of body weight
- Loss of muscles and fat tissues
- Laboratory OK

# Types of malnutrition - kwashiorkor



### Types of malnutrition - kwashiorkor

- Deficiency of protein in nutrition
- Appears in stress
- Accelerated catabolism
  - body proteins pool decreased
  - Fat stores intact
  - Marked hypalbuminemia
  - Extracellular fluid retention, swellings

### Types of malnutrition - kwashiorkor

- Protein catabolism results
  - Musculature loss (300 g/24 hours)
  - Breath muscles attenuation (hypoventilation, hypoxia, bronchopneumonia)
- Albumin depletion under 30,0 g/l
  - fluids distribution disturbances (in interstitial and intravascular spaces)
- Transport protein depletion
  - Cortisol, trace elements, medication transport defects
- Decreased immunoglobulin levels
  - Immunity problems

# Comparison

#### <u>Marasmus</u>

### **Kwashiorkor**

- energetic need

hypometabolism

hypermetabolism

(sepsis, polytrauma)

- primary cause

decreased food income

decreased protein income

catabolism

hormonal regulators

stress hormones, cytokines

- development

months, years

days, weeks

clinical findings

cachexy

well-nourished looking

oedemas, hair loss

# Comparison

#### **Marasmus**

#### **Kwashiorkor**

Laboratory findings
 within standards

↓ albumin, transferin, lymphocytes

- Clinical course
adequate reaction to
short-term stress

infections, reparation problems, decubital ulcers, skin lesions, breath and heart failure

- lethality

low high

### **Nutritional disorders**

- 1. Definition
- 2. Types of malnutrition
- 3. Differencial diagnosis of malnutrition
- 4. Therapy of malnutrition

# Differencial diagnosis

- 1. IS the patient malnourished?
- 2. What is the REASON for malnutrition?



# Differencial diagnosis

1. IS the patient malnourished?

2. What is the REASON for malnutrition?

# IS the patient malnourished?

Anamnesis

Clinical examination

Laboratory findings

# Malnutrition diagnosis

#### Anamnesis

- Weight loss 1 M 5%, 6 M 10%
- Appetite
- Food intake

#### Clinical finding

- body weight, BMI
- skin fold thickness (triceps)
- muscle atrophy (arm circumference, hand grip)
- oedemas
- skin hypersensitivity tests (anergy)
- vitamin carency

# Malnutrition diagnosis

### Laboratory finding

| <ul><li>Serum albumin</li></ul> | 30 g/l |
|---------------------------------|--------|
|---------------------------------|--------|

# Nutritional screening

- SGA- subjective global assessment
  - Basal anthropometry, weight loss in 6 months, food intake, GIT symptoms
- PNI- prognostic nutritional index
  - anthropometry, skin hypersensitivity tests, serum protein concentrations
- NRI- nutrition risk index
  - Dietary habits, restrictions, diseases, feeding changes
- MNA- mini nutritional assessment ->

### Mini nutritional assessment

- 18 questions classification on points
- Basic screening: appetite, weight loss, moveability, psychic state, acute sickness, dementia, BMI
- Detail evaluation: social situation, pills, decubital ulcers, dietary habits (food amount, milk products, eggs, fruits, vegetable, fluids), arm circumference
- Result: malnutrition, malnutrition risk, good nutritional status

# IS the patient malnourished?

Anamnesis

Clinical examination

Lab findings

YES

NO

# Differencial diagnosis

• 1. IS the patient malnourished?

2. What is the REASON for malnutrition?

### 1. Inadequate income

- Swallowing problems
- GIT obstructions
- GIT motility failure
- Consciousness derangement
- Food allergy
- Poverty
- Anorexia nervosa

### 2. <u>Digestion impairment</u>

- gastrectomia
- Pancreato-biliar insufficiency
- Enzyme defects

### 3. Resorption impairment

- Short bowel syndrome
- fistulas
- enteritis
- pharmacotherapy

### 4. Metabolic malfunction

- Liver failure
- Renal insufficiency
- Respiratory insufficiency
- Intermedial metabolism impairment

### 5. Increased loss and need

- Abscesses
- fistulas
- diabetes mellitus
- infections
- katabolic status, trauma, operation
- endocrinopathy
- Malignity

### The reason of malnutrition – 1<sup>st</sup> step

#### Anamnesis

- PH: active tumor, GIT disease, previous surgery, food allergy, malabsorbtion, DM, ORL, stomatology, anorexia nervosa
- Actual: appetite, swallowing problems, abdominal pain, dyspnea, diarhoe, GIT complaining

#### Clinical findings

- Abdominal scars, fistulas, abdominal tumors
- Ikterus
- demency, hyperthyreosis

### The reason of malnutrition – 2<sup>nd</sup> step

#### Laboratory

- Proteins, liver tests, renal functions, CRP
- blood count
- Tumor markers
- Fe, LD, elfo, hormons
- Other methods
  - Ultrasound, X rays, CT, ECHO
  - Endoskopy
- Psychiatrists, gerontologists, neurologists

### **Nutritional disorders**

- 1. Definition
- 2. Types of malnutrition
- 3. Differencial diagnosis of malnutrition
- 4. Therapy of malnutrition

### Therapy of malnutrition – the goal

- Optimal nutrients and energy income
- Compensate hydratation and mineral dysbalances
- · Vitamin carencies.

## Therapy of malnutrition – WHOM?

To patients with imminent or present malnutrition.

## Therapy of malnutrition

When choosing the nutritional support we try to find the most physiological way.

- No contraindications select enteral way.
- Parenteral nutrition just in case that enteral nutrition is contraindicated.

## Therapy of malnutrition

When choosing the nutritional support we try to find the most physiological way.

- No contraindications select enteral way.
- Parenteral nutrition just in case that enteral nutrition is contraindicated.

### **Artificial nutrition**

**ENTERAL** 

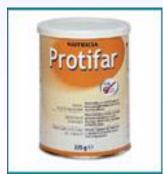
PARENTERAL

#### Administration of enteral nutrition

#### 1. Peroral

sipping





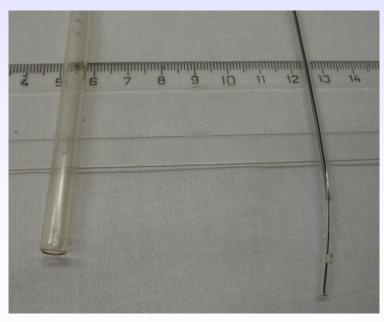






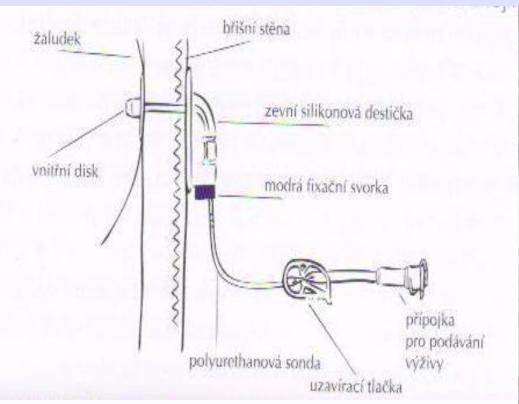


Modular dietetics



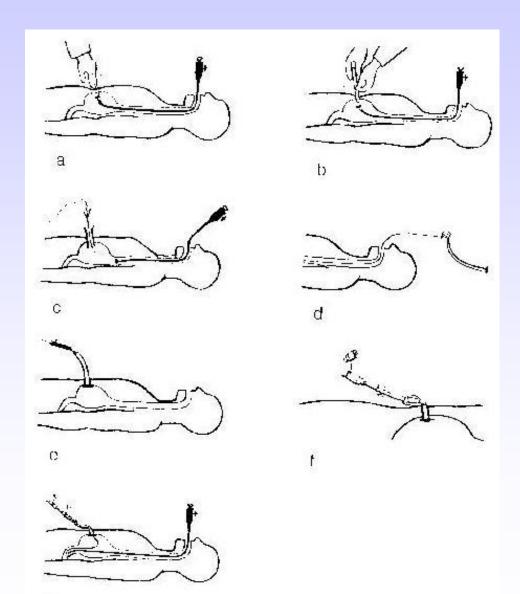



#### Administration of enteral nutrition


- 2. Tubes (short-time, up to 6 w.)
  - Nasogastric tube
  - Nasojejunal tube






#### Administration of enteral nutrition

- 3. PEG (percutaneous endoskopic gastrostomy)
- 4. Jejunostomia





## **PEG** insertion





## Administration technique

- continously
  - Pump
  - -60 140 ml/h
- bolus
  - -250-400 ml











## Polymeric enteral nutrition

- Contains: defined energy (1-2 kcal/ml), nutrients, minerals, vitamins and trace elements amount
- No cholesterol, no glutamine
- With/without fiber
- Lower osmolarity than oligomeric EN
- Tasty

## Oligomeric enteral nutrition

- Chemically defined energy (1-2 kcal/ml), nutrients, minerals, vitamins and trace elements amount
- amino acids, oligo, mono a disaccharides, esterificated
   FA
- No need of digestive enzymes
- Jejunal tube
- No cholesterol, no glutamine, no gluten, no lactose, no fiber
- Higher osmolarity than polymeric EN (hyperperistaltics, diarrhea and dehydratation risk)
- Lower palatability

## EN advantages

- Physiological way for food income
- Enteral mucosa cells nutrition (atrophy prevention, perfusion improvement, less infections)
- Bowel motility improvement
- Peptic ulcer prevention
- Hepatobiliar system maintain
- GIT hormones production stimulation
- Economical aspects

### **Artificial nutrition**

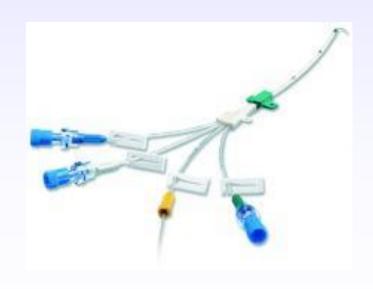
**ENTERAL** 

**PARENTERAL** 

#### Parenteral nutrition indications

When enteral nutrition contraindicated

Combination EN and PN !!!


#### Parenteral nutrition administration

- Peripheral canulas
  - Short-term PN
  - Vessels inflamation (under 900 mosmol/l)



- Long-term PN
- Home PN





#### Central venous line accesses

- Tunnel catethers
  - Home PN



Portcatethers





### Způsoby podávání parenterální výživy

- Single infusions
- Multiple bottle system
- All in one
  - Commertial sacks




Magistraliter prepared sacs











## Parenteral nutrition complications

- Metabolic complications
  - hyperglycemia, hypoglycemia, electrolyte dysbalance
  - Vitamin or trace elements deficiency
  - Acute liver steatosis, cholecystolithiasis
- Catheter complications
  - sepsis
  - Air embolism
  - Trombo-embolism

## Energy expenditure

#### $TEE = BEE \times AF \times IF \times TF$

- BEE basal energy expenditure
- AF activity factor
- IF injury factor
- TF thermic factor

### Basal energy expenditure (TEE = BEE x AF x IF x TF)

- Using charts
- Indirect calorimetry
- Calculation <u>Harris-Benedict equation</u>

Men: BMR= (66,47+13,75xW + 5xH - 6,75xA)x1,3

Women: BMR= 655,09 + 9,6xW + 1,86xH - 4,86xA

W- weight

H- height

A- age

## Activity factor

 $(TEE = BEE \times AF \times IF \times TF)$ 

| • | In bed - immobilized | 1,1 |
|---|----------------------|-----|
| • | In bed - mobile      | 1,2 |
| • | Mobile out of a bed  | 1,3 |
| • | ALV                  | 0.9 |

# Injury factor

(TEE = BEE x AF x IF x TF)

| <ul> <li>Without complications</li> </ul> | 1,0     |
|-------------------------------------------|---------|
| <ul> <li>Postoperative</li> </ul>         | 1,1     |
| <ul> <li>Fracture</li> </ul>              | 1,2     |
| <ul> <li>Sepsis</li> </ul>                | 1,3     |
| <ul> <li>Peritonitis</li> </ul>           | 1,4     |
| <ul> <li>Polytrauma</li> </ul>            | 1,4     |
| <ul> <li>Polytrauma + sepsis</li> </ul>   | 1,6     |
| • Burn injury 30-70%                      | 1,7-1,8 |
| <ul> <li>Burn injury 70-90%</li> </ul>    | 2,0     |

### Thermic factor

 $(TEE = BEE \times AF \times IF \times TF)$ 

| • | TT 38° C | 1,1 |
|---|----------|-----|
| • | TT 39° C | 1,2 |
| • | TT 40° C | 1,3 |
| • | TT 41° C | 1,4 |

